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ABSTRACT

In this work, we propose and numerically analyze the large-core tellurite glass
(TWPN/I/6) photonic crystal fibers with an octagonal cladding structure. The
wavelength-dependent effective refractive index and dispersion are investigated
over the 1.0-6.0 um spectral range. The results show that the maximum and
minimum effective refractive indices are 2.051 and 2.005, corresponding to
structures with A = 1.5 um; d/A = 0.3 and A = 0.875 um; d/A = 0.7, respectively.
Furthermore, two optimized fibers (/A = 0.875 um; d/A = 0.3 and A = 1.0 um; d/A =
0.3), exhibit flat dispersion profile with low values at suitable pump wavelengths,

confirming their potential application in mid-infrared supercontinuum generation.

Keywords: Octagonal cladding, Photonic crystal fibers, flat dispersion,

supercontinuum generation.

I. INTRODUCTION

Photonic crystal fiber (PCF) is a new generation of optical fiber with a unique
geometric structure, distinct from conventional optical fibers that rely on the refractive
index difference between the core and cladding regions. PCFs are designed with a
periodic array of air holes running along the fiber length, enabling flexible and precise
control of the guiding mechanism. Owing to this structure, PCFs exhibit several
remarkable advantages, such as endlessly single-mode operation, tailorable dispersion
characteristics, the ability to realize either large mode areas or highly confined modes,
as well as enhanced nonlinear effects [1]. Consequently, PCFs have become an ideal
platform for supercontinuum generation (SCG), in which a narrowband laser pulse
propagating through the fiber undergoes various nonlinear and dispersive processes,
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leading to a dramatic spectral broadening and the formation of a broadband,
continuous light source. The mechanism of supercontinuum formation can be
effectively controlled through the engineered dispersion characteristics of PCFs,
achieved by tailoring the air-hole geometry and material composition. As a result,
optimized performance with a spectral coverage extending from the visible to the
infrared region can be obtained, making PCFs highly suitable for a wide range of
photonic applications [2].

Silica-based PCFs have demonstrated many outstanding advantages in SCG
applications due to their low cost and transparency window covering the visible and
near-infrared regions. However, generating SCG in the mid-infrared (mid-IR) region is
challenging because of the very high optical loss at wavelengths beyond 2.0 um [3-5].
Consequently, tellurite glass has emerged as a highly promising material platform for
mid-IR photonics, as its nonlinear refractive index is one to two orders of magnitude
higher than that of silica, and its optical transparency window extends up to 5.5 um in
the infrared region [6, 7]. These characteristics make tellurite-PCFs ideal for
applications in SCG, pulse compression, coherence tomography, and spectroscopy
meteorology [8-10].

Numerous experimental investigations and numerical simulations have
demonstrated the potential of tellurite-based PCFs for efficient SCG [6,7,11,12]. Various
geometrical designs have been optimized to achieve both anomalous and all-normal
dispersion, with the zero-dispersion wavelength (ZDW) shifted into regions favorable
for broadband SCG. Solid-core PCFs and hexa-spiral twisted structures exhibit
extremely large nonlinearities and well-tailored dispersion, with the ZDW effectively
tuned near 1650 nm [6]. In addition, tellurite PCFs with a hexagonal lattice, in which
the air holes of the four inner rings surrounding the core are reduced in size, provide a
very flat all-normal dispersion profile of approximately —10 to -50 ps/(nm-km) across
the 1500-2400 nm range [13]. More recently, octagonal lattice geometries and large-core
GasSba2Se0 have been explored to combine low confinement loss with high nonlinearity.
These designs offer additional degrees of freedom in tailoring the dispersion
landscape, enabling simultaneous optimization of the ZDW position, flattened
dispersion, and enhanced mode-field control, which are highly beneficial for stable and
broadband SCG [14].

In this work, to the best of our knowledge, we propose for the first time a
tellurite-based TWPN/I/6 photonic crystal fiber that combines an octagonal cladding
lattice with a large-core design created by completely removing the first ring of air
holes surrounding the core. This design supports both all-normal and anomalous
dispersion regimes over a broad wavelength range from 1.0 to 6.0 um, with the ZDW
shifting toward shorter wavelengths as the filling factor (d//) and lattice constant (A)
are varied. Based on dispersion analysis, we further present two optimized PCF
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structures that exhibit flat dispersion profiles with very low values of —4.188 and 2.148
ps/(nm-km) at pump wavelengths of 2.25 and 1.95 um, respectively, making them
highly suitable for broadband, coherent SCG in the mid-IR region.

II. NUMERICAL MODELING OF THE PCFs

The Lumerical MODE Solutions software was employed to model the structure
of the tellurite TWPN/I/6 photonic crystal fibers (T-PCFs). The tellurite glass, denoted
as TWPN/I/6 and synthesized within the oxide system 65TeO>-28WO:-5Na:0-2Nb20s
[mol%], was incorporated into the material database using the Sellmeier coefficients of
its linear refractive index, as given by Eq. (1) [13]. As shown in Fig. 1, the refractive
index of TWPN/I/6 tellurite glass decreases monotonically with increasing wavelength
in the 1.0-6.0 um range. This trend reflects the intrinsic normal material dispersion of
tellurite glass, which dominates in the near-infrared and mid-infrared regions. Such a
dispersion characteristic provides a favorable basis for photonic crystal fiber design,
where the geometrical contribution can be engineered to counterbalance the material
dispersion, enabling the realization of both all-normal and anomalous dispersion
regimes for broadband SCG applications.
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Fig. 1. The wavelength-dependent refractive indexs of tellurite TWPN/I/6 are extrapolated using

Sellmeier’s equation [13] (a) and the cross section of the T-PCF.

The T-PCF structures are modeled with an octagonal cladding consisting of
seven concentric air-hole rings periodically arranged along the core axis. In solid-core
PCFs, the core size together with the nearest air-hole rings strongly governs the
dispersion properties, including flatness over a broad wavelength range, slope, value
at the pump wavelength, and the ZDW shift. The outer air-hole rings, in contrast,
mainly influence the nonlinear characteristics, particularly the confinement loss of the
fundamental and higher-order modes [15, 16]. Following this concept, a large solid
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core is realized by removing the first ring of air holes surrounding the core, resulting in
a core diameter of Dc = 41 — d. To investigate the effective refractive index and
dispersion properties, the filling factor d/A varies between 0.3 and 0.7, while the lattice
constant / takes the values of 0.875, 1.0, 1.25, and 1.5 um. A two-dimensional view of
the T-PCF structure is shown in Fig. 1(b).

The optical properties, including the effective refractive index and dispersion,
are investigated by numerically solving Maxwell’s wave equations (Eq. 2) using the
full-vector finite-difference eigenmode FDE method for light propagation in the T-
PCFs. Perfectly matched layer PML absorbing boundaries are applied to emulate an
open domain, thereby suppressing radiation outside the computational window and
preventing spurious reflections at the edges.

PO (o) E(r)= A E(r.0)- 7Py (1,0) @)

E(r,0)= TE(r,t)dt,r ={xy.z2} ()

where £/ ( r, t) is the field propagating along z direction, £ ( r, a)) denotes the Fourier
transform of £ (I‘,t). Py, (r, a)) and k (a)) = n(a))a)/ C are the Fourier transform of the

nonlinear polarization and wave number, respectively.

III. RESULTS AND DISCUSSION

Fig. 2 presents the wavelength dependence of the real part of the effective
index, Re[net], for T-PCFs with different lattice constants /A (0.875-1.5 um) and filling
factors d/A (0.3-0.7). In all cases, Re[n.x] decreases monotonically with A, consistent
with normal dispersion in solid-core PCFs. For fixed 4, larger d//A lowers Re[ne.t] due to
stronger air filling and weaker modal confinement; e.g., at A =1.0 um and A = 1.55 um,
Re[nex] decreases from 2.05 (d/A = 0.3) to 1.92 (d/A = 0.7). For fixed d//, increasing A
increases Re[ne] across the spectrum, reflecting stronger core guidance; e.g., at d/A =
0.5 and A =2.0 um, Re[net] rises from 2.014 (A = 0.875 pm) to 2.048 (A = 1.5 pm).

At A =2.0 um, Tab.1 shows Re[ne.i] ranges narrowly from 2.005 (A = 0.875 um,
d/A =0.70) to 2.051 (A = 1.5 pm, d/A = 0.30). Physically, a higher Re[#e] corresponds to
stronger confinement and reduced leakage, while a lower Re[ner] enhances the index
contrast and increases the waveguide dispersion contribution. Consequently, larger
d/A and smaller A yield stronger negative waveguide dispersion, shifting the ZDW
toward shorter wavelength and facilitating access to anomalous dispersion. In contrast,
smaller d/A and larger A flatten dispersion and shift the ZDW to longer wavelength
region, which is advantageous for achieving stable all-normal dispersion regimes.
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Overall, these results demonstrate that both the lattice constant /A and the filling factor
d/A provide effective means of engineering the effective index of T-PCFs. These
effective-index trends directly impact waveguide dispersion: higher d//A and smaller A
lead to a stronger negative waveguide contribution, shifting the ZDW toward shorter
wavelengths range and enabling anomalous dispersion regimes. Conversely, smaller
d/A and larger A reduce the waveguide contribution, favor flatter all-normal
dispersion, and shift the ZDW toward longer wavelengths or even beyond the spectral
window of interest.
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Fig. 2. The real part of effective refractive index of T-PCFs is a function of wavelength with
different values of d/A and A =0.875; 1.0; 1.25, and 2.0 um

Tab. 1. The real part of the effective refractive index at 2.0 um with different values of d/A and A

Re[nef]
ajA A =0.875 um A=1.0um A =1.25pum A=15pum
0.3 2.026 2.034 2.045 2.051
0.35 2.023 2.032 2.043 2.05
0.4 2.02 2.03 2.042 2.049
0.45 2.017 2.028 2.041 2.049
0.5 2.014 2.026 2.04 2.048
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0.55 2.012 2.024 2.039 2.047
0.6 2.01 2.022 2.038 2.046
0.65 2.007 2.02 2.036 2.045
0.7 2.005 2.018 2.035 2.045

During the SCG process, the output spectral characteristics including
bandwidth and coherence, are strongly influenced by the dispersion regime, whether it
is entirely normal or anomalous. These regimes are associated with two distinct
femtosecond pulse pumping mechanisms. To achieve an ultra-broadband SCG, PCFs
are typically pumped in the anomalous dispersion regime. In this case, dispersive
waves (DW) and soliton dynamics such as soliton fission (SF), stimulated Raman
scattering (SRS), and soliton self-frequency shift (SSFS), govern the formation and
evolution of the SCG spectrum. However, the coherence of the SCG in this regime is
often low due to its sensitivity to noise amplification, resulting in spectral structures
with significant fluctuations. In contrast, SCG generated under the all-normal
dispersion regime can preserve the temporal integrity of optical pulses and
significantly suppress noise. Two dominant nonlinear effects, self-phase modulation
(SPM) at the initial stage followed by optical wave breaking (OWB), play key roles in
spectral broadening, although the resulting bandwidth is typically narrower [1].
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Fig. 3. The dispersion properties of T-PCFs is a function of wavelength with different values of
d/A and A =0.875; 1.0; 1.25, and 2.0 pm
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The total dispersion, D(A), arises from two contributions: the material
dispersion, Dm(A), originating from the wavelength-dependent refractive index of the
fiber material, and the waveguide dispersion, Dw(A), resulting from the wavelength
dependence of the mode propagation constant. While material dispersion is intrinsic to
the fiber material and does not depend on the fiber geometry, waveguide dispersion is
determined by the fiber structure and its geometrical parameters. Accordingly, the
overall dispersion D(A) can be expressed as [1]:

2 d°(Re[ny ])

D(4)=

(4),
with Re[ner] is the real part of the effective index of the propagating mode in the O-
PCF.

The dispersion properties of the proposed T-PCFs are presented in Fig. 3,
showing their strong dependence on the d// and A. An all-normal dispersion profile is
observed only for the smallest d//A = 0.3 with a lattice constant of 0.875 um. As either
the d/A or A increases, the dispersion shifts entirely into the anomalous regime across
the wavelength range. This transition from normal to anomalous dispersion is
consistent with the corresponding variation of the real part of the effective refractive
index, Re[n.f], confirming the close relationship between structural parameters and
mode properties. Smaller d//A values favor extended regions of normal dispersion,
while larger d//A and /A enhance mode confinement, resulting in anomalous behavior.
In summary, these results demonstrate a clear trend in dispersion engineering: all-
normal dispersion is achievable only under specific low d/A conditions, whereas
anomalous dispersion dominates otherwise. The consistency with Re[nei] profiles
further validates the design approach.

Tab.2. The variation of the ZDWs with different values of d//A and A

A=0.875 um A=1.0um A=125pum A=15um
d/A ZDWsl ZDWs?2 ZDWsl ZDWs
0.3 D <0 1.927 1.890
0.35 1.803 3.031 1.791 1.829
0.4 1.69 3.538 1.719 1.789
0.45 1.629 3.952 1.675 1.762
0.5 1.588 1.644 1.740
0.55 1.558 1.62 1.723
0.6 1.535 1.6 1.708
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0.65 1.515 1.582 1.693

0.7 1.497 1.566 1.680

Tab. 2 summarizes the variation of the ZDW with respect to the /A and the d/A.
It is observed that for a fixed 4, increasing d// results in a continuous blue-shift of the
ZDW, attributed to the enhanced waveguide dispersion due to stronger index contrast.
Conversely, for a fixed filling factor, enlarging /A induces a red-shift of the ZDW, as the
waveguide contribution becomes weaker compared to the material dispersion.
Interestingly, in the case of /A = 0.875 um with d/A = 0.35-0.45, two ZDWs are obtained,
indicating the formation of an anomalous dispersion window sandwiched between
two normal dispersion regimes. This feature is advantageous for supercontinuum
generation and soliton dynamics.
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Fig.4. The dispersion properties of two optimal T-PCFs

From the dispersion analysis, two optimal T-PCFs are proposed with dispersion
profiles tailored SCG either in the all-normal or in the anomalous regime (Fig. 4). For
design F1 (A = 0.875 um, d/A = 0.30), the pump wavelength was chosen at 2.25 um,
corresponding to a local maximum of the dispersion curve. At this point, the
dispersion value is relatively low (—4.188 ps/(nm-km)) (Tab. 3), which favors efficient
spectral broadening. Pumping here ensures that SCG occurs entirely in the normal-
dispersion regime, dominated by SPM and FWM, leading to a smooth and coherent
spectrum. This makes Fi an excellent candidate for stable all-normal-dispersion SC
sources in the mid-IR. For design F2 (A = 1.0 um, d/A = 0.30), the pump wavelength is
set at 1.95 um, slightly above the zero-dispersion wavelength (ZDW = 1.927 um). At
this wavelength, the dispersion is relatively low (D = 2.148 ps/(nm-km)) (Tab. 3),
ensuring a favorable balance between dispersion and nonlinearity. Pumping in this
anomalous regime allows the excitation of higher-order solitons and subsequent
fission, while the close proximity to ZDW enhances dispersive-wave generation. This
combination leads to a broader and more asymmetric supercontinuum compared to
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the all-normal dispersion case. Therefore, F2 is well suited for soliton-driven SCG with
extended bandwidth in the mid-IR.

Tab.3. The structural parameters and characteristic values of two optimal T-PCFs

# D A d// Pump wavelength Re[71et] D
(um) | (um) (um) ps/(nm-km)

Fi | 3238 | 0875 | 0.3 2.25 2.014 —4.188

F, 3.7 1.0 0.3 1.95 2.037 2.148

In our designs, the optimized dispersion values at the pump wavelengths are
relatively small, with —4.188 ps/(nm-km) at 2.25 pm (F1) and 2.148 ps/(nm-km) at 1.95
um (F2). These values are significantly lower than those reported in several previous
tellurite PCF studies, where dispersion often exceeded 10-50 ps/(nm-km) in the mid-IR
region [13], or dispersion can be kept within 60.47 to 61.33 ps/(nm-km) from 2.15 um to
2.85 um wavelength [17]. Conversely, our values are larger than the ultra-flattened
dispersion achieved in some telecom PCFs, such as 0.93 and 1.533 ps/(nm-km) over
wavelength range from 1.3 to 1.6 um [18]. The dispersion values obtained in F1 and F2
not only facilitate efficient phase matching and enhance nonlinear interactions, but also
provide a balanced design trade-off between bandwidth extension and fabrication
feasibility.

Nevertheless, The fabrication of Te-based PCFs remains challenging due to
thermal and chemical instabilities, but advances in optimized stack-and-draw
techniques, extrusion, and protective coatings are essential to enable scalable, low-loss
fibers for practical nonlinear photonic applications. Future experimental efforts should
focus on composition-tuned tellurite glasses with higher thermal stability, long-length
preform fabrication with controlled air-hole uniformity, and integration of large-mode-
area or specialty lattice designs to further enhance supercontinuum performance [19].

IV. CONCLUSION

We have systematically analyzed the large-core tellurite (TWPN/I/6) photonic
crystal fibers through the effective index and the corresponding dispersion. The
octagonal cladding structure and the removal of an inner air-hole ring to form a large
core both strongly influence Re[n.], thereby enabling effective dispersion control. The
wavelength dependence of Re[nei] governs ZDW shifts and allows precise dispersion
engineering. Two optimized designs were obtained: F1 (A = 0.875 um, d/A = 0.30) with
an all-normal profile and low dispersion of —4.188 ps/(nm-km) at 2.25 um, and F2 (4 =
1.0 pm, d/A = 0.30) operating in the anomalous regime with ZDW = 1.927 um and
dispersion of 2.148 ps/(nm-km) at 1.95 um. These dispersion profiles favor smooth SCG
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in the all-normal regime and soliton-driven broadening in the anomalous regime. The
results emphasize that octagonal cladding and large-core design enhance the flexibility
of Re[net]-guided dispersion tuning, providing versatile platforms for mid-IR
supercontinuum sources.
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PHAN TiCH SO TINH CHAT PHAN TAN
CUA SOI TINH THE QUANG TU TWPN/I/6 GOC TELLURITE

Hoang Trong Pitc, Nguyén Thi Thay*
Truong Pai hoc Su pham, Dai hoc Hué
“Email: nguyenthithuy@dhsphue.edu.vn; ntthuy@hueuni.edu.vn
TOM TAT

Trong nghién cttu nay, ching t6i dé xudt va phan tich soi tinh thé quang tu tellurite
(TWPN/1/6) 16i 16n véi cau truc 16p vo dang bat giac. Chiét sudt hiéu dung va dac
tinh tan sac phu thudc budc séng dwoc khao sét trong dai 1,0-6,0 um. Két qua cho
thay chiét sudt hiéu dung cuc dai va cuc tiéu lan luot dat 2,051 va 2,005, tuwong tng
véi céac cau trac c¢6 A =1,5 um; d/A =0,3 va A = 0,875 um; d/A = 0,7. Ngoai ra, hai
cau hinh soi duwgc t6i wu héa (A = 0,875 um; d/A =0,3 va A =1,0 um; d/A = 0,3) thé
hién cdu hinh phing véi gia tri tn sdc thap tai cac bwdc song bom phit hop, khing

dinh tiém nang tng dung ctia chiing trong viéc tao ra siéu lién tuc hdng ngoai gitra.

Tir khéa: 16p vo bat giac, soi tinh thé quang tt, tan sic phang, tao siéu lién tuc.
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